If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=295
We move all terms to the left:
7x^2-(295)=0
a = 7; b = 0; c = -295;
Δ = b2-4ac
Δ = 02-4·7·(-295)
Δ = 8260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8260}=\sqrt{4*2065}=\sqrt{4}*\sqrt{2065}=2\sqrt{2065}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2065}}{2*7}=\frac{0-2\sqrt{2065}}{14} =-\frac{2\sqrt{2065}}{14} =-\frac{\sqrt{2065}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2065}}{2*7}=\frac{0+2\sqrt{2065}}{14} =\frac{2\sqrt{2065}}{14} =\frac{\sqrt{2065}}{7} $
| 1/2y-4=13 | | 3x+200=13x | | 4(x1)=8 | | 30-4(2w-1)=6w-4(6+w) | | 5(m+1)+7=3(4+m)+2m | | 15f-18=17f+16 | | -9+p=18+4p | | 45+3y=12y | | w=2/10(18)+12/6 | | 2a-(3-4a)=15 | | 4x-1.5(x-2)=12x+20 | | 3x2+10x=-4 | | 180=5(4x+4) | | -4(2x-5)+6=12-8x+7 | | 4p+28=-8+10p | | -11y-16+2y=4-10y | | 59=-9t-4 | | 16u-12-8u=2u-14-8 | | 6+10u+11u=-14+17u | | |4x+12|+11=32 | | 15m+22=-5m+18 | | 1/3y,y=2/7 | | 1−2s=3;s=5 | | 5=x²-4x | | 19+7x=-3(x-7)+8 | | m-13=41.5 | | 2y-3=11y+42 | | 7x+15-9x+10=5 | | 3q-8=2q-1 | | 7x+9(2x-4)=-14 | | 1+r-7r=-7-6r | | -3n-8(7+5n)=288 |